Radionuclides in Milk

J. E. CAMPBELL, G. K. MURTHY, C. P. STRAUB, K. H. LEWIS, and J. G. TERRILL

Robert A. Taft Sanitary Engineering Center, U. S. Department of Health, Education, and Welfare, Cincinnati, Ohio

Monthly milk samples from the milk sheds serving Atlanta, Austin, Chicago, Cincinnati, Fargo-Moorhead, New York City, Sacramento, Salt Lake City, Spokane, and St. Louis were analyzed for Ca and K content, I^{131} , Ba^{140} , Cs^{137} , Sr^{89} , and Sr^{90} . Analysis of variance applied to these data indicated geographical and seasonal variations. The average Sr^{90} and Cs^{137} content of milk samples from Sacramento was the lowest, while that from St. Louis was the highest. The remaining stations were grouped into one of two intermediate categories. Samples collected during early spring and fall showed higher Sr^{90} and Cs^{137} than at other times, probably associated with changes in seasonal feeding practices. No relationship was observed between the concentration of Sr^{90} and Cs^{137} in milk and publicly announced weapons tests. In contrast, a direct relationship was observed between the weapons tests and the concentration of I^{131} , Ba^{140} , and Sr^{89} , which was influenced by the half life of the radionuclides, the meteorological conditions, and the geographical location of the sampling stations with respect to the test site. Observed concentrations of radionuclides were below maximum permissible concentrations. Impracticability of estimating concentration of Sr^{90} in milk, in terms of gross β -activity or Cs^{137} , is discussed.

S AMPLES representing a wide variety of environmental media have been analyzed to provide information on the amounts and kinds of radioactive materials found in air, water, biota, soil, etc. The contribution of radioactive material from the diet represented a major Fource of environmental exposure and was worthy of special attention in evaluating the effect of radioactive materials on man.

Inasmuch as milk is produced throughout the United States at all times of the year and is consumed extensively by all segments of the population, this food was selected as the first item for analysis. Even though milk has been studied most intensively, analyses have been made on other foods as time and circumstances permitted.

In mid-1957, five stations were selected for study within the milksheds serving the metropolitan areas of Sacramento, Salt Lake City, St. Louis, Cincinnati, and New York. The results of the first year of operation were published in 1959 (3). The Public Health Service study differs from other milk surveillance programs in that each sample taken from a milkshed is representative of the same production area, and radionuclides with short half lives, such as I¹³¹, Ba¹⁴⁰, and Sr⁸⁹, are determined in addition to Cs¹³⁷ and Sr⁹⁰.

Early results indicated variations in specific radionuclide levels with respect to time and geographical location and emphasized the need for continuation of the sampling program to provide a better understanding of the transfer of radioactive materials from their source, fallout, through the food chain of the domestic animal to man.

In mid-1958, the sampling points were increased to include portions of 10 milksheds. The new locations included the cities of Spokane, Fargo-Moorhead, Chicago, Austin, and Atlanta. Since the publication of the first year's results, reports have been submitted to the Public Health Service's Divisions of Radiological Health and Engineering Services, and have formed the basis of the monthly releases made by the Department of Health, Education, and Welfare.

Many laboratories in this country and abroad are currently engaged in the determination of Sr⁹⁰ and other radionuclides in milk and other foods. and among those of special interest are included two surveys in 1958 and 1959 (4, 5). These samples represent the largest geographical coverage of the nations' milk supply on a short-term basis insofar as the Sr⁹⁰ content is concerned. Their reports show that, on the average, the Sr⁹⁰ content of market milk was slightly higher during July and August 1959, than in the corresponding period of 1958-i.e., the level increased from 8.0 to 8.8 strontium units, respectively.

Extensive measurements of Sr⁹⁰ in milk and other environmental media have been made by the Health and Safety Laboratory of the Atomic Energy Commission as part of its program on radionuclides in the environment. Similar studies are now under way in certain state health departments including New York and Minnesota. Of special note is the work by Anderson and associates (1, 2) on Cs¹³⁷ in dried milk.

The purpose of this paper is to review the results of analyses from May 1957 through December 1959, and to extend our observations on seasonal and geographical variations in the radionuclide content of milk.

Methods

The sampling procedures are the same as described in the previous report (3). All the γ -emitting radionuclides are determined according to the method described by Hagee *et al.* (6), while Sr⁸⁹ and Sr⁹⁰ are determined by radiochemical methods (10, 13).

Since the initiation of this project several modifications in techniques have been developed which have resulted in substantial savings in manpower and expense. The most significant improvement in the determination of Sr^{20} is the elimination of the ashing step (12). A nonspectrometric method for the determination of I¹³¹ in milk has also been developed and may be used in conjunction with Sr^{90} analysis (11).

Results

The results of analysis of milk samples collected in the Public Health Service study during the period May 1958 through December 1959 for Ca and K content, I¹³¹, Ba¹⁴⁰, Cs¹³⁷, Sr⁸⁹, and Sr⁹⁰ are presented in Table I.

In considering the results here, however, the radionuclides have been divided into groups based on their half lives. The first group consists of Sr⁹⁰

	Dec.	$\begin{array}{c} 9.2\\ 213.8\\ 6.4\\ 6.4\\ 15.8\\ 13.1\\ 1$	8550000555555 8350005555555	000000000		00000
Monthly Milk Samples—May 1958 to December 1959 Micromicrocuries per Liter	Nov.	24.0 5.4 15.7 15.7 12.1 2.4 12.1	50445505500000000000000000000000000000	0000000000		00000
	Oct.	$\begin{array}{c} 8.3\\ 25.1\\ 3.6\\ 113.2\\ 6.5\\ 111.3\\ 2.2\\ 10.1\\ 10.1\\ 10.1\\ 10.1\\ 10.2\\ 1$	20 115 155 155 225 225 25 25 25 25 25 25 25 25 25 25	00 <u>4</u> 00400 <i>w</i> 0		00000
	Sept.	4 5 2 1 1 2 2 0 0 2 7 2 9 2 0 0 2 2 9 2 9 2 9 2 9 2 9 2 9 2 9	332410 33521540 38032455	0~00000001	=======	00000
	Aug.	$\begin{array}{c} 1122\\ 1522\\$	36 114 75 31 42 72 75 75 75 75 75 75 75 75 75 75 75 75 75	20215153 <i>333</i> 55	000000000	00000
	July	14.6 17.6 17.6 17.1 18.7 18.7 18.7 18.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19	44 834 67 67 67 67 67	24	0000000000	00000
	June	14.0 17.2 19.9 19.9 11.8 11.2 12.0 5 22.1 12.2 12.2 12.2 12.2 12.2 12.2 12	39 39 62 62 81 86 86 86	22 25 25 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	000000000	00000
	May	$\begin{array}{c} 12\\ 12\\ 34\\ 6\\ 5\\ 22\\ 8\\ 6\\ 5\\ 22\\ 6\\ 5\\ 22\\ 6\\ 5\\ 22\\ 6\\ 5\\ 22\\ 6\\ 5\\ 22\\ 6\\ 2\\ 22\\ 6\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	1655 102 102 102 102 102 102 102 102 102 102	$\begin{array}{c} 22\\ 53\\ 94\\ 52\\ 52\\ 23\\ 33\\ 84\\ 52\\ 25\\ 23\\ 32\\ 25\\ 22\\ 25\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 2$		00000
	Apr.	10.5	535 101 101 104 104 104 104 104 104 101 101	7 33 62 62 63 336 67 110 110	0000000000	00000
	Mar.	222.5 22.5 14.7 15.5 25.3 15.5 25.5 17.3 17.3 17.4 10.9 17.4 10.9 17.4 10.9 17.4 10.9 17.4 10.9 17.4 10.9 17.4 10.9 17.4 10.9 17.5 17.9 17.9 17.9 17.9 17.9 17.9 17.9 17.9	710 5555 710 710 710 710 710 710 710 710 710 710	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00000000	0-40-
in Monthly Milk tion, Micromicrocuries pe	Feb.	0120 0004000800 0004000800			004000000	Ω 4 Ο − Ø
ion, io	. F m-90	01091041011	137 55 54 54 55 55 55 70 70 70	n-89 6 14 12 12 137 11 16	40"	31ª
and K in Concentration,	.c. Jan. Strontium-90	9 11 1 4 4 5 1 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cesium-137 47 47 63 26 21 21 21 22 47 47 47 64	ontiun 10 15 15 15 62 62 77 20 20 20	Barium-1 3 4 4 1 5 0 8 8 8 2 2 1 1 3 3	odine-1 0 2 2 0
onuclides, C α, aı ^{Cor}	Dec. Str	15.62 10.22 8.12 8.12 8.12 8.12 8.12 8.12 8.12 8	Ce C	Str. 244	2800800 780 <u>7</u> 800800	Io 8 8 14 14
	Nov.	8.8 50.1 6.1 8.8 8.8 8.8 8.8 1.3 8.8 8.1 1.9 8.8 1.5 1.0 1.0 1.0	$\begin{array}{c} 46\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 54\\ 54\\ 54\\ 54\\ 54\\ 54\\ 54\\ 54\\ 54\\ 54$	$\begin{array}{c} 55\\ 108\\ 13\\ 53\\ 53\\ 53\\ 54\\ 53\\ 54\\ 53\\ 54\\ 52\\ 53\\ 54\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52\\ 52$	$233 \\ 233 $	35 177 33 33 17
	Oct.	9.5 12.2 6.0 6.0 8.0 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	522333555112 522333555112 522333555112 52533555 52533555 52533555 5255 52	85 26 111 139 151 139 161 139 161 161 161 161 161 161 161 161 161 16	₹≈₹v-402-≈	61 35 11 12
rrious R	Sept.	2000 400 2000 2000 2000 2000 2000 2000	$232 \\ 233 \\ 233 \\ 233 \\ 233 \\ 233 \\ 232 $	73 98 44 17 140 94 43	1536 - 10536	$\begin{array}{c} 1\\ 2\\ 1\\ 2\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$
n of V	Aug.	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	52228 5331 5331 538 538 538 538 538 538 538 538 538 538	41 263 44 111 64 64 64 64	$\begin{array}{c} 22\\ 20\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	69 42 77 22
Concentration of Various Radi	ylul	$\begin{array}{c} 10.5\\ 13.0\\ 18.7\\ 10.2\\ 7.1\\ 16.3\\ 7\\ 110.2\\ 10.2\\ 7\\ 110.2\\ 10.2$	45 85 85 25 55 55 55 55 55 55 55 55 55 55 55 55	84 194 26 20 20 112 59	64 1112 122 15 17 17 12 12 12 12 12 12 12 12 12 12 12 12 12	67 67 107 156 45
	June	9.9 111.6 7.1 13.7 15.6 	::::::::::	63 106 23 26 26 26 26 26 27 20 20 20 20 20 20 20 20 20 20 20 20 20		$\begin{smallmatrix} 0 & 0 \\ 240 \\ 240 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
Table I.	May	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000		23 107 38	∿5 4∞ 5 ; ; ; ; ; ;	00003
		New York Cincinnati St. Louis Salt Lake City Sacramento Atania Austin Fargo-Moorhead Chicago Spokane	New York Cincinnati St. Louis Salt Lake City Sacramento Atlanta Austin Fargo-Moorhcad Chicago Spokane	New York Cincinnati St. Louis Salt Lake City Sacramento Atlanta Austin Fargo-Moorhead Chicago Spokane	New York Cincinnati St. Louis Satr Lake City Sacramento Atlanta Austin Fargo-Moorhead Chicago Spokane	New York Cincinnati St. Louis Salt Lake City Sacramento
1	18	AGRICULTURAL AI	ND FOOD CHEMISTRY			

118 AGRICULTURAL AND FOOD CHEMISTRY

Table II.Concentration of Sr⁹⁰ andCs¹³⁷ in Monthly Milk Samples, May1958 through December 1959

Milkshed	Conc	Concn., $\mu\mu$ c. per liter			
Strontium-90					
	Av.	Max.	Min.		
Sacramento Austin Salt Lake City	4.8 5.1 5.9	8.6 8.2 11.8	$1.0 \\ 2.2 \\ 3.1$		
Chicago New York	8.3 8.5	12.5 14.6	5.2 3.3		
Spokane Cincinnati Atlanta Fargo-Moorhead	11.2 11.9 13.9 14.1	22.6 18.2 22.8 22.1	5.6 6.6 7.3 8.1		
St. Louis	19.4	37.3	10.0		
Cesium-137					
Sacramento	21	43	6		
Austin Salt Lake City Cincinnati New York Chicago	29 32 39 39 44	55 63 65 58 65	15 17 12 17 25		
Fargo-Moorhead Atlanta Spokane	56 58 62	87 104 119	20 27 28		
St. Louis	70	160	35		

and Cs^{137} , both with half lives of about 28 years; the second group consists of I^{131} , Ba^{140} , and Sr^{89} , having half lives of approximately 8, 13, and 53 days, respectively.

Table II summarizes the average concentrations of Sr⁹⁰ in the milk samples from each location, along with the highest and lowest value observed. The cities have been set into groups to indicate significant differences between cities based on an analysis of variance of the data. There is no significant difference in the average Sr⁹⁰ concentration in milk from Salt Lake City. Sacramento, and Austin. The level of Sr⁹⁰ in the milk from Chicago and New York is higher than the first group of cities, but significantly lower than the concentration observed in the samples from Cincinnati, Spokane, Atlanta, and Fargo-Moorhead; however, the average concentration of Sr⁹⁰ in the milk from the portions of the milkshed serving St. Louis is significantly higher than that from any other area. This is a statistical analysis dependent on observed variation in the samples and does not infer biologically significant differences.

0 0

 $^{24}_{12}$

r 9

04

0 5

0 0

0 რ

Continental U.S. Elsewhere 1959.

from December 1958 to December

No tests were reported

Analysis of variance applied to monthly differences within one location revealed significant seasonal variations which are probably related to changes from stall to pasture feeding. No clear association between Sr⁹⁰ concentrations and the publicly announced weapons tests were observed.

In Table II the observed levels of Cs¹³⁷ are also summarized. In a general way

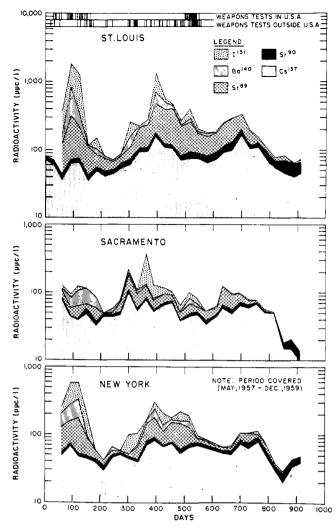


Figure 1. Radionuclide content of milk samples

the variation in levels of this radionuclide was similar to that of Sr^{90} . The milk from Sacramento had the lowest Cs^{137} content while that of St. Louis had the highest. The remaining areas fell into one of two intermediate groups as indicated in the table. Samples produced during the spring of 1959 contained significantly more Cs^{137} than samples produced at other times. Similarly, no clear association was observed between the concentration of Cs^{137} and weapons tests.

In contrast to the findings with Sr^{90} and Cs^{137} , a correlation between weapons test activity and the occurrence in milk of radionuclides with short half lives was observed in all areas.

In Figure 1 the radioactivity contributed by each radionuclide determined (other than K^{40}) in the samples received from the St. Louis, New York, and Sacramento milksheds has been summed and plotted as a function of time since May 1957. At the top of the graph the number of weapons tests conducted inside and outside the continental United States have been marked on the same time scale. The Cs¹³⁷ values employed in this figure were derived from radiochemical analysis (13) to be consistent with the first year's results. The highest levels of radioactivity coincide with periods of weapons tests and were largely due to the presence of the shorter halflived nuclides, I¹³¹, Ba¹⁴⁰, and Sr⁸⁹. This relationship is not precise, however, since the number of tests do not reflect the fission yield of the explosion and the collection of samples was made independent of the testing program. This is especially evident during the last period of tests in which most of the explosions were very small.

The pattern of activity observed for the New York and St. Louis samples appears to be true for all of the areas studied except Sacramento, in which the levels of activity are relatively nonresponsive to continental weapon tests. This difference is presumably related to the location of the milkshed with respect to the test area and the prevailing west to east movement of air.

In all locations I^{131} and Ba^{140} had decayed to negligible values by the end of 1958 or about 3 months after the last weapons tests. The half life of Sr^{89} is sufficiently long that measurable concentrations of this radionuclide were

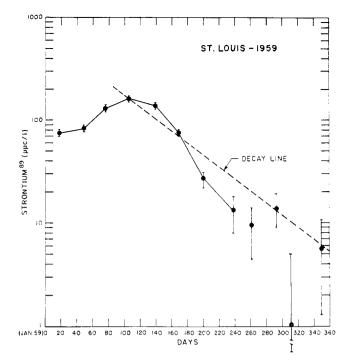


Figure 2. Concentration of Sr^{89} in milk samples from St. Louis area, January 1959 to December 1959

observed until the fall of 1959 or about a year after the last tests. At the present time, with the exception of K^{40} , most of the radioactivity in milk is due to Cs^{137} and Sr^{90} .

The variations corresponding to seasons through 1957 and 1958 also coincided in a general way with weapons tests activity; thus, it was not until the cessation of testing that the seasonal character of the variation in Sr^{90} , Cs^{137} , and Sr^{89} in milk could be confirmed. This phenomenon appears to be generally true for all geographical areas studied.

In order to gain more insight into the influence of season on the level of radioactivity in milk, the concentration of Sr⁸⁹ in the samples received from the St. Louis area from January 1959 through December 1959 has been plotted in Figure 2. During this period no weapons tests were conducted, but levels of Sr⁸⁹ increased steadily from January to reach a peak in April, which coincided with the maximum concentration of Sr⁹⁰. The value obtained in May also reflected an increase in the Sr⁸⁹ content since this value is above that which would have been expected as a result of the decay applied to the April sample, thus indicating that additional Sr⁸⁹ was deposited during this period or was otherwise made available to the cattle. The June levels are falling at a rate faster than that evidenced by decay alone, while the July, August, and September values approximately follow the rate of decay.

The calcium and potassium contents of milk samples shown in Table I are provided so that strontium and cesium units may be calculated. An analysis of variance applied to these data indicates a significant difference in the concentration of calcium both by month and geographic location. The samples from New York and Chicago had the lowest calcium content while those from St. Louis were the highest. Seasonally, samples received during July and August had the lowest calcium values. In contrast to calcium, the potassium content of milk samples from St. Louis was significantly lower than that from other milksheds with the samples from New York being highest.

In view of the inherent difficulties associated with the radiochemical determination of Sr⁹⁰, any procedure which will provide evidence concerning the concentration of this radionuclide but not requiring the tedium associated with the direct analysis would be welcome. One approach to this problem has been the estimation of Sr⁹⁰ from the gross β -activity of the sample. This approach was not satisfactory, however, since the errors involved in the measurement of gross β -activity were usually greater than the observed concentration of Sr⁹⁰. Furthermore, the gross β -activity of a sample may vary considerably with respeet to time if radionuclides with short half lives are present. Correction of gross β -activity for K⁴⁰ did not appreciably improve its usefulness.

The second approach to estimating Sr⁹⁰ concentration may be found in the relation between Cs187 and Sr80. Van Dilla and Anderson (14) and Low and Edvarson (9) have observed a relationship between these two radionuclides in which samples containing high concentrations of Cs137 contain high levels of Sr⁹⁰. In a general way similar observations may be made from the data presented here. However, the data presented in Table III for all samples from August 1958 through December 1959 show that the strength of the relationship between Cs137 and Sr90 is variable and in no case sufficiently great to be particularly useful in closely estimating the concentration of one radionuclide from an observed value of the other.

Discussion

Adequate interpretation of the health significance of the data from a surveillance program for milk presents some formidable obstacles. The contribution of radioactivity from any one item of the diet or other environmental media does not reflect total exposure. Since maximum permissible concentrations (M.P.C.) for water and air were established primarily in terms of accepttable body burdens of the various radiation sources, a concept based on total intake appears to be a feasible approach for evaluating potential exposure. For

example, from the Recommendations of the International Commission on Radiological Protection (7), the permissible daily intake calculated from the M.P.C. for Sr⁹⁰ in water amounts to 2200 $\mu\mu c.$ per day and for air, 2000 $\mu\mu$ c. per day, giving an average value of 2100. This level of intake will not exceed a body burden of 2 μ c. over a 50-year perod. This is, however, an occupational exposure for radiation workers and is based on a 168-hour week. If it is divided by 30, the factor recommended by I.C.R.P., one obtains an average general population permissible level (8) of exposure, or 70 $\mu\mu c.$ of Sr⁹⁰ per day. This may be used as a point of reference in evaluating the total amount of Sr⁹⁰ received by man irrespective of source. (The Federal Radiation Council has been instructed to review the whole problem of radiation exposure and permissible levels and to advise the President of their conclusions.) A sample calculation of total intake is shown in Table IV based on analysis of samples made in the Cincinnati area during 1958-59. If this concept is accepted, these levels of Sr⁹⁰ activity, including that from milk, do not exceed the reference value. Recognition of the metabolic relationships of Ca and Sr⁹⁰ may be accomplished through the calculation of strontium units based on total Sr⁹⁰ and Ca intake. Although this concept is useful in estimating exposure levels, certain significant parameters are not included in the calculations of the M.P.C. Some of these include the nature of the chemical eompounds with which the radionuclides are associated and the concentration of the stable elements corresponding to or very similar to the radionuclide. Furthermore, M.P.C. values have been developed on the basis of standard man and are not in fact directly applicable to certain segments of the population of great concern-namely, fetal life and the verv young.

Until sufficient factual information on the biological effects of low levels of radiation is available, the interpretation of data from surveillance programs will be of only limited usefulness for evaluating the health effects of radiation exposure. Meanwhile, the need exists to continue the surveillance programs, to investigate the factors influencing the concentration of fallout products in foods, and to develop practical methods for the control, reduction, or removal of these substances from man's environment.

Acknowledgment

The authors express their appreciation to Wesley E. Gilbertson, John D. Faulkner, and Harold B. Robinson for their many helpful suggestions and aid during the course of the project, to

Table III. Statistical Relationshipsbetween Sr90 and Cs127

Milkshed	Carrelation Coeff., r	Error Variance, 100(1 — r²) %
Spokane	0.77	40.7
Austin	0.71	49.6
Cincinnati	0.69	52.4
Atlanta	0.68	53.8
Salt Lake City	0.67	55.1
Sacramento	0.65	57.8
Fargo-Moorhead	0.57	67.5
St. Louis	0.51	74.0
Chicago	0.31	90.4
New Ÿork	0.29	91.6

Table IV. Estimated Ca and Sr⁹⁰ Intake from Environmental Sources, Cincinnati, 1958–59

Source	Estimated Weekly Intake	Ca, G./ Week	Sr ⁹⁰ , μμc./ Week		
Air	140 cu. meters	•••	5.6		
Water Food	7 liters	0.4	5.6		
Milk	3.5 kg.	4.2	42.0		
Dairy products ^a Vegetables	0.3 kg. 2.6 kg.	$1.0 \\ 1.0$	12.4 23.7		
Meats, sea-	2.0 kg.	1.0	23.1		
foods and eggs Cereals and	2.6 kg.	0.7	5.9		
pastries	0.9 kg.	0.4	9.5		
	0.9 kg. I per week I per day	$ \begin{array}{c} 0.3 \\ 8.0 \\ 1.1 \end{array} $	3.0 107.7 15.4		
^a Other than milk.					

James E. Coakley, George Holtzer, Samuel Cox, Ulysses Rhea, Gerald J. Karches, and Bryon M. Branson for their work in the analyses of the many samples involved in the study, to Eugene K. Harris for his statistical analysis of the data, and to the regional, state, and local officials and industry representatives for generously giving their time and effort in collection of the monthly milk samples.

Literature Cited

- (1) Anderson, E. C., Science 128, 882 (1958).
- (2) Anderson, E. C., Schuch, R. L., Fischer, W. R., Langham, W., *Ibid.*, **125**, 1273 (1957).
- (3) Campbell, J. E., Murthy, G. K., Goldin, A. S., Robinson, H. B., Straub, C. P., Weber, F. J., Lewis, K. H., Am. J. Public Health 49, 225 (1959).
- (4) Consumer Repts. 24, 102 (1959).
- (5) Ibid., 25, 64 (1960).
- (6) Hagee, G. R., Karches, G. J., Coldin, A. S., *Talanta* 5, 36 (1960).
- (7) International Commission on Radiological Protection, J. Health Physics 3, 1 (1960).
- (8) *Ibid.*, 2, 1 (1959).
- (9) Low, K., Edvarson, K., Nature 183, 1104 (1959).

- (10) Murthy, G. K., Campbell, J. E., J. Dairy Sci. 42, 1288 (1959).
- (11) Ibid., 43, 1042 (1960).
- (12) Murthy, G. K., Coakley, J. E.,
- Campbell, J. E., Ibid., 43, 151 (1960).

(13) Murthy, G. K., Jarnagin, L. P.,

Goldin, A. S., Ibid., 42, 1276 (1959).

(14) Van Dilla, M. A., Anderson, E. C., Los Alamos Scientific Laboratory, University of California, private communication, September 1959. Received for review July 14, 1960. Accepted December 5, 1960. Division of Agricultural and Food Chemistry, 137th Meeting, ACS, Cleveland, Ohio, April 1960. This paper is a report of the cooperative project of the Divisions ot Engineering Services and Radiological Health, Bureau of State Services, Public Health Service, Department of Health, Education, and Welfare.

Radionuclides in Man from Nuclear Tests

J. LAURENCE KULP

Geochemical Laboratory, Lamont Geological Observatory, Columbia University, Palisades, N. Y.

The results of recent experimental work in the determination of the stratospheric inventory of fission products—i.e., the fraction of Sr^{90} and Cs^{137} taken up directly from rain—and new measurements of the concentration of Sr^{90} in human bone at this laboratory make possible a more accurate prediction of the future radiation doses from these isotopes to the world population. It is concluded that the U. S. diet has passed its peak concentration of Sr^{90} and Cs^{137} , that Sr^{90} probably will remain the largest contributor to the radiation dose to an individual, and that Cs^{137} measurement can be used to monitor Sr^{90} in milk in emergency situations. These results also suggest that in the event of large-scale nuclear warfare, the general radioactive contamination would not preclude the existence of large populations if short time (6 to 12 months) survival were possible.

N 1953, when the potential seriousness of world-wide fallout was first clearly identified, virtually nothing was known of the mechanisms, or rates of movement of nuclear debris from the point of detonation to the human population. In the intervening years, as a result of a major research effort at many laboratories, the larger aspects of the fallout problem have been solved. The previous speakers and their associates have played a large role in this development and their papers have treated many key problems in the movement of fission products to and through the food chains. It is my lot to summarize briefly the present status of the situation from these papers and other sources, and to report on some of the work at the Geochemical Laboratory of Columbia University on the levels of some of the critical radionuclides in man.

Production and Distribution of Nuclear Debris

A comprehensive study of the stratospheric reservoir has been operative for the past 3 years. By using a meridional net woven by flights of manned aircraft and supplemented by the balloon program of the Atomic Energy Commission, results were obtained which now make it possible to state the rate and mechanism of removal of the debris from the stratosphere (8). Figure 1 shows the tropical and polar tropopauses, the discontinuity, and the ground level. Debris injected into the polar stratosphere has a half residence time of about

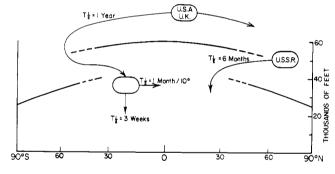


Figure 1. Transfer of fission product debris from stratosphere to surface of earth

6 months and essentially all comes out into the Northern Hemisphere. Debris injected by megaton weapons at the equator has a half residence time of about 1 year. These values were determined by actually measuring the change in the stratospheric reservoir with time.

The dominant transfer mechanism of stratospheric debris is through the break between the polar and equatorial tropopauses. The quantity of debris which passes through this gap is greater during the winter than at any other time of year, as this is the period of greatest activity of the jet stream which is located in this discontinuity. Once in the troposphere, stratospheric debris is removed by precipitation with a 3-week half life. The debris also moves laterally at the rate of about 10° per month. Since the polar regions have very low precipitation, this volume of the troposphere merely acts as a storage space,

and thus, the average specific activity of rain is essentially constant from 30° to 90° N or S. Toward the equator, however, the washout is effective so that a minimum in the deposition occurs in the 0° to 10° S latitude belt.

Figure 2 shows that the specific activity of rain increases in the spring of each year, following the winter stratospheric transfer, and then reaches a minimum in the fall. The fact that W^{185} , a tracer introduced in the U. S. Hardtack series at 10° N in the summer of 1958, also shows a spring peak in 1959, proves that this seasonal pattern has a meteorological origin and is not primarily due to Russian testing.

The distribution of the Sr^{90} on the surface of the earth is also fairly well known. The more recent estimate is shown in Figure 3 (18) where the ratio of specific activity on the ground between the latitude zones 40° to 50° N to